Ana içeriğe atla

Cebirsel İfadeleri Sadeleştirme

Cebir  – Cebirsel İfadeleri Sadeleştirme
Cebirsel İfadeler
+ veya – işaretleri ile birbirinden ayrılan harflere ifade denir.

3p + 2t bir cebirsel ifadedir.
3p ve 2t bu ifadeninterimleridir.  

Aynı harf ile gösterilenler aynı terimlerdir.
Toplama ve Çıkarma İçin Kurallar
İfadeler, aynı terimleri toplamak veya çıkarmak koşuluyla sadeleştirilebilirler.

İfadelerin nasıl sadeleştirildiğini inceleyin:
t + t + t = 3t
3t – t = 2t
4p + 3p = 7p
pq + pq = 2pq
q 2 +q 2 = 2q 2

Bu ifadelerde terimler aynı olduğu için sadeleştirme yapılabildi. (Not: kuvvetleri de aynı olmak zorunda).

Aşağıdaki ifadelerde terimler aynı olmadığı için basitleştirme yapılamaz :
3y + 2t = 3y + 2t
4y + 3 = 4y +3
y 2 + y 3= y 2 +y 3
5x – 3y = 5x – 3y
Bu durum aşağıdaki gibi daha zor ifadelere de uygulanabilir.

Örnek 1: 3t + 4p + 2t - 3p ifadesinin en sade halini bulunuz.

3t + 2t = 5t (Not: terimler önlerinde bulunan işaretler ile beraber alınır)
4p – 3p = p
O halde, 3t + 4p + 2t – 3p = 5t + p


Örnek 2: 5y + 6x – 3y – 8x ifadesinin en sade halini bulunuz.

5y – 3y = 2y
6x – 8x = –2x
o halde, 5y + 6x – 3y – 8x = 2y – 2x
Aşağıdaki ifadelerde terimler aynı olmadığı için sadeleştirme yapılamaz:
3y + 2t = 3y +2t
4y + 3 = 4y + 3
y+y= y + y
5x – 3y = 5x – 3y
Terimlerin Çarpımı
a. Aynı terimler y × y x y = y 3  
  y x y x y x y = y 4  

Yukarıdaki eşitliğin sağ üst köşede küçük olarak yazılmış sayıya “kuvvet” denir.Kuvvet bir harfin(ya da sayının) kaç kez kendisi ile çarpıldığını gösterir.

Örnek: p 5 = p x p x p x p x p
p 5 x p 2 = p x p x p x p x p x p x p = p 7

Not: Tabanları aynı olan terimler(burada p) çarpılırken kuvvetleri aşağıdaki gibi toplanır.
5 + 2 =7 olduğundan p 5 x p 2 =p 7

Aşağıdaki ifadelerin nasıl basitleştirildiğini (en sade halinin nasıl bulunduğunu) inceleyin:

3p 2 x 5p 3 = 15p 5
 
2y 3 x 4y 4 = 8y 7
 
b. Farlı terimler
Aşağıdaki ifadelerin nasıl basitleştirilidiğini inceleyiniz:

p x q = pq
3p x 2q = 6pq (Önce katsayılarını sonra harfleri çarparız).
p 2 x q 3 = p 2 q 3


Cebirde çarpma işlemi için kurallar
Aynı terimlerde , kuvvetleri toplarız
Farklı terimlerde çarpma işaretini ortadan kaldırız

Terimleri Bölme
a. Aynı Terimler
Aşağıdaki şekilde sadeleştirin: t 5 / t 2 =
t 5
(cebirdeki bölme işaretini kullanın)  
   
t 2
   
  = t x t x t x t x t  
            t x t    
   =  t 3    
O halde,  t 5 / t 2 =  t 3  

Bu işlem, aşağıdaki gibi kuvvetleri çıkartarak da bulunabilir.
6p 7 / 3p 2 = 2p 5
Önce katsayılar bölünür, sonra harfler.


b. Faklı Terimler:
Örnek 1: Bu ifadeyi sadeleştirin.
p 5 / y 3 =
p 5
    y 3

Bu durumda kuvvetleri çıkartamayız.
Örnek 2: Bu ifadeyi sadeleştirin 6q 3 / 2t 5 = 6q 3
  2t 5
   
    = 3q 3
     t 5

Bu durumda katsayıları bölebiliriz.

Yorumlar

Bu blogdaki popüler yayınlar

matematik karikatürleri

içerik: bu karikatürlere gerçekten çok güleceksiniz, matematik karikatürleri, komik öğrenciler, güldüren karikatürler, karikatür, matematik karikatürleri, eğlenceli resimler, komik matematik resimleri, eğlenceli resimler, eğlenceli matematik,

3 Boyutlu Cisimler ve Hacimleri

Şekil, Uzay ve Ölçme (Temel) – 3 Boyutlu Cisimler ve Hacimleri Hacim, üç boyutlu bir cismin uzayda kapladığı yerdir. (Diğer bir deyişle; hacim, üç boyutlu bir cismin içinde kalan boş alandır). Bir cismin hacmi, içine yerleştirilen küplerin sayısı ile ölçülür. Eğer kübün bir kenarı 1cm uzunlukta ise, birim kübün hacmi 1 cm 3 ‘tür. Küp Bir kübün 6 tane kare yüzeyi vardır. Aşağıdaki 2 cm'lik bir küptür: Dikdörtgenler Prizmasi Bir dikdörtgenler prizmasinin dikdörtgen yüzeyleri vardir. Bu dikdörtgenler prizmasinin hacmini, içine yerlestirilen küpleri sayarak bulacagiz . Tüm küpler gözükmedigi için, katlara bölerek çalismak en iyisidir. Tabanda 12 tane küp görüyoruz.(3x4=12) Üç kat olduguna göre, toplam küp sayisi 3 x 12 = 36 dir. Dikdörtegnler prizmasinin hacmi = 36 küptür. Dikdörtgenler prizmasinin hacmi için formül Bu formül, dikdörtgenler prizmasinin boyutlari verildiginde kullanilabilir. Hacim=Uzunluk x Genislik x Yükse...

Sayıların Mucizesi

Bu kadarı da insanı oturup düşünmeye yönlendirir galiba, aşağıdaki sayıları inceleyine insanın şaşırmaması elde değil. Daha fazla söze gerek yok, buyrun birlikte inceleyelim.. 9 basamaklı 123456789 sayısını 9'un katı bir sayılarla çarpınca ortaya aşağıdaki ilginç sonuçlar çıkıyor; 12345679 x 9 = 111 111 111 12345679 x 18 = 222 222 222 12345679 x 27 = 333 333 333 12345679 x 36 = 444 444 444 12345679 x 45 = 555 555 555 12345679 x 54 = 666 666 666 12345679 x 63 = 777 777 777 12345679 x 72 = 888 888 888 12345679 x 81 = 999 999 999 ve 12345679 x 999 999 999 = 12345678987654321 Aşağıdaki hesapları ve sonuçlarını inceleyin ilginç değil mi? 1 x 8 + 1 = 9 12 x 8 + 2 = 98 123 x 8 + 3 = 987 1234 x 8 + 4 = 9876 12345 x 8 + 5 = 98765 123456 x 8 + 6 = 987654 1234567 x 8 + 7 = 9876543 12345678 x 8 + 8 = 98765432 123456789 x 8 + 9 = 987654321 9 ve 1 > Basit ama ilginç sonuçları olan bir işlem daha; 1 x 9 + 2 = 11 12 x 9 + 3 = 111 123 x 9 + 4 = 1111 1234 x 9 + 5 = 1...